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ABSTRACT

The sample mean classifier, such as the nearest mean classifier (NMC) and the Bayes 
classifier, is not robust due to the influence of outliers. Enhancing the robust performance 
of these methods may result in vital information loss due to weighting or data deletion. 
The focus of this study is to develop robust hybrid univariate classifiers that do not rely on 
data weighting or deletion. The following data transformation methods, such as the least 
square approach (LSA) and linear prediction approach (LPA), are applied to estimate the 
parameters of interest to achieve the objectives of this study. The LSA and LPA estimates 
are applied to develop two groups of univariate classifiers. We further applied the predicted 
estimates from the LSA and LPA methods to develop four hybrid classifiers. These 

classifiers are applied to investigate whether 
cattle horn and base width length could be 
used to determine cattle gender. We also used 
these classification methods to determine 
whether shapes could classify banana 
variety. The NMC, LSA, LPA, and hybrid 
classifiers showed that cattle gender could be 
determined using horn length and base width 
measurement. The analysis further revealed 
that shapes could determine banana variety. 
The comparative results using the two data 



Pertanika J. Sci. & Technol. 30 (4): 2831 - 2850 (2022)2832

Friday Zinzendoff Okwonu, Nor Aishah Ahad, Innocent Ejiro Okoloko,
Joshua Sarduana Apanapudor, Saadi Ahmad Kamaruddin and Festus Irimisose Arunaye

sets demonstrated that all the methods have over 90% performance prediction accuracy. The 
findings affirmed that the performance of the NMC, LSA, LPA, and the hybrid classifiers 
satisfy the data-dependent theory and are suitable for classifying agricultural products. 
Therefore, the proposed methods could be applied to perform classification tasks efficiently 
in many fields of study. 

Keywords: Classification, least squares, linear prediction, prediction errors, robust

INTRODUCTION

This article focuses on univariate classification methods. Classification methods often 
assign an object to the actual groups based on certain rules (Tang et al., 2014). Univariate 
classification methods have been discussed extensively in different fora (Gupta & 
Govindarajulu, 1973; Huberty & Holmes, 1983). The most frequently applied classifiers 
are based on the group mean estimates, univariate time series (Karimi-Bidhendi et al., 
2018; Song et al., 2020), and the Bayes probability rule (Harianto et al., 2020; Ye, 2020). 
Unfortunately, these classifiers are influenced by outliers, thereby resulting in a high 
misclassification rate. The outliers are weighted or deleted, thereby resulting in significant 
information loss to minimize the misclassification rate. Other robust estimates used as a 
plug-in to robustify the mean classifiers are the minimum covariance determinant (MCD) 
(Hubert et al., 2018; Hubert & Debruyne, 2010; Leys et al., 2019), the S and M estimators 
(Almetwally & Almongy, 2018; Campbell et al., 1999; Croux et al., 1994; Kordestani et 
al., 2020; Verardi & McCathie, 2012). However, these estimators applied to develop robust 
classifiers often result in vital information loss. Thus, the Bayes rule is a unique univariate 
classifier that does not depend on the mean and covariance methods but may perform poorly 
if the data set in one group is significantly larger than the data set in the other. To avert the 
above problems, we proposed robustifying the above methods by estimating the parameters 
of interest using the least square approach (LSA) and linear prediction approach (LPA). 
The LSA and the LPA estimate drastically minimize the loss of information and hence are 
better estimates to be applied as a plug-in to learn or train the classical classifiers.

The concept and applications of the linear prediction approach (LPA) have been 
discussed in detail (Atal, 2006; Manolakis & Proakis, 1996). Linear prediction is based on 
the theory of estimation (Marple & Carey, 1989). It is a robust and dependable predictive 
estimator (Srivastava, 2017). Prediction based on linear or multivariate methods applies 
information on linear or multivariate variables. For example, let δ be the dependent random 
variable and xi, i = 1,2,3, ... , k be the independent random variable, otherwise called the 
“predictor random variable.” Useful information can be obtained if the Borel functions 
are defined (Bickel & Doksum, 2015; Dobler, 2002; Lindley, 1999; Penenberg, 2015). The 
variables used in defining the Borel functions are random variables that generate a subspace 
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w of the Hilbert space Hsp.This concept produces the most tractable prediction variable δ, 
that relies on xi. The assumption is that the tractable predictor and the independent variables, 
xi have a normal joint distribution (Jaeger, 2006).

The least-square approach (LSA), like other estimation procedures and its variant, 
has received extensive coverage (He et al., 2021; Drygas, 2021; Yao et al., 2020; Kern, 
2016; Miller, 2006).  This unique technique can be traced to Galton (1886) though coined 
by Legendre in 1800s. Pearson and Fisher expanded the work of Galton in diverse ways. 
The main objective of applying this procedure is to estimate and fit the given data set into 
the function to obtain numerical value (Miller, 2006).  It can be done by considering pairs 
of observations (Yn, Xn), n = 1,2, .. , K, which consist of the dependent random variables 
Yn and the independent random variables Xn. To perform prediction involves the linear 
combination of these variables (Yn, Xn).

The LSA tends to minimize the parameters of interest by estimation based on the sum 
of squares deviation (Kern, 2016). It is also applied to determine the line of best fit of the 
given data set. The LSA has been applied to provide solutions to a power line (Girshin 
et al., 2016), pressure detection (Sun et al., 2015), motor induction (Koubaa, 2006), data 
fitting (Chen & Liu, 2012), and identification of groundwater pollution (He et al., 2021). 
On the other hand, the LPA has been applied to solve different problems, including the 
travel time and modeling the prediction of Covid-19 outbreak (Ogundokun et al., 2020; 
Olarenwaju & Harrison, 2020), climate change (Hasselman & Barnett, 1981) and data 
forecasting (Vaseghi, 2008).

In applied research, measurement errors or data imputation errors frequently occur 
if the process is not properly monitored or equipment calibration failure, which may 
result in data point differential often called influential observations or outliers. Influential 
observation is described as a data point that is far away from most of the data points. 
Influential observations often alter the performance of the classical methods, such as the 
nearest mean classifiers (NMC) (Okwonu & Othman, 2012; Skurichina & Duin, 2000) 
that depends on the sample mean. Hence robust methods are applied to overcome this 
problem by weighting the data set or deleting the influential observations. However, these 
procedures often result in information loss. This paper applies the LSA and LPA to obtain 
robust prediction estimates (Srivastava, 2017) without information loss. We propose two 
robust classification rules based on the LSA and the LPA estimates. We further apply the 
predicted estimates from the LSA and LPA to develop four hybrid classifiers. Finally, we 
compare these proposed methods with the classical nearest mean classifier (NMC) (Okwonu 
& Othman, 2012; Skurichina & Duin, 2000) and the Bayes classifier. 

The comparative classification performance of these methods is also investigated 
based on the probability of correct classification (PCC) and the percentage performance 
prediction accuracy (PPPA). These classifiers were adopted to investigate whether horn 
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measurement can be used to determine cattle gender. We also applied these classifiers to 
investigate whether their shapes can determine banana variety. This study proposes robust 
hybrid univariate classifiers that do not expunge outliers, thereby minimizing the loss of 
vital information. Therefore, the objectives are (1) to minimize the loss of vital information, 
(2) to minimize the misclassification rate, (3) to derive new hybrid classifiers with robust 
classification accuracy, (4) to investigate the comparative classification performance of the 
conventional univariate classifiers and the proposed hybrid classifiers and (5) to investigate 
the validity of the data dependency theory which states that the performance of any classifier 
strictly depends on the data structure and sign direction.

The rest of this paper is structured as follows.  First, the LSA, LPA, and hybrid methods 
are explained in Section 2. Then, data collection and analysis are presented in Section 3. 
Finally, the conclusion follows in Section 4.

MATERIALS AND METHODS

The univariate classifier (UC) and the Bayes classifier (BC) are known classification 
methods for univariate applications. The UC is based on mean computation, while the 
BC is designed using the probability concept.  In this paper, we will skip the rigors of the 
formulations and focus on the estimate and plug-in methods.

Linear Prediction Approach (LPA)

The LPA has gained wide coverage to the extent that its coefficients are termed backward 
and forward autoregression (Eriksson et al., 2019; Mello, 2006; Engle, 1982; Jones, 1978). 
It has applications in digital signal processing, economics, and many other disciplines 
(Randall et al., 2020; Tan & Jiang, 2018; Srivastava, 2017; Manolakis & Proakis, 1996; 
Bultheel & van Barel, 1994). In addition, the LPA produces robust predictive estimates 
(Srivastava, 2017). We start by defining the dependent and independent random variables 
to develop the LPA classifier. Let δ denote the dependent random variable and xi, i = 1,2,3, 
... , k be the independent predictor random variables. Suppose:

 							     

The expression can be written as:

.

Taking the expectation of the last expression and squaring it, we obtain

.

It can be expressed as Equation 1:

. 	       (1)
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It implies that the mean squared error (MSE) is minimized. The focus is to determine the 
dependent variable δ based on xi.Then, iterative steps can be introduced on the dependent 
variable to comply with the predictor variables xi.

Let be a constant, define β as the Hilbert space and φ be the subspace of β,  
then is the random variable defined on φϵβ (Bickel & Doksum, 2015; 
Lindley, 1999). This process can be viewed as a “minimization problem.” Further analysis 
revealed that δ = <δi> could be paired with The first pairing based 
on expectation property yields

.

It satisfies and The variance of δ, that is δ2 can be 
computed in a similar procedure. Suppose there exists a random variable x such that where 

and the variance of x defined as Based on the projection 
concept we have

.

.

Recall that the covariance between δ and x is denoted as ; it 
indicates the relationships between the two variables. From the last expression, we obtain

. It implies that the prediction can be performed as Equation 2: 

						             (2)

where ρδx denotes the correlation between δ and xi, this implies that and are the 
variance of δ and x, respectively. The analysis indicates that δ can be estimated based on x.

From Equation 2, we can derive the LPA classifier as follows. First, we obtain each 
group predicted estimate; therefore, Equation 2 can be defined as group predictors such 
that k = 1,2; then, we restate Equation 2 as Equation 3:
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					           (3)

The cutoff mark of Equation 3 is defined in Equation 4:

.
								      

										                 (4)

The LPA classifier assigns an object to group one (G1) if . otherwise to 
group two (G2) if .

The Least Square Approach (LSA)

Prediction by the LSA has received detailed attention in the literature. However, this 
subsection adopts a brief discussion on its prediction approach. The LSA can be stated as 
Equation 5:

								               (5)

where x denotes the predictor variable, denotes the estimate of the response variable, 
and b denotes the slope, 

,   

and the intercept is given as . We apply Equation 5 to derive the LSA 
classifier by restating Equation 5 as Equation 6:

 							              (6)

Then the cutoff mark of Equation 6 is defined as Equation 7:

 								               (7)

The LSA classifies an object to group one (G1) if , otherwise assigns  to 
group two (G2) if 

Hybrid Linear Prediction Classifier (HLPC)

From the above discussions, we have given a detailed description of the LPA concerning 
prediction and classification. The output from Equation 2 is assumed to be a robust 
estimate to perform group classification for univariate cases. In this subsection, we will 
invoke the univariate classifier (Huberty & Holmes, 1983), Bayes classifier (Theodoridis 
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& Koutroumbas, 2009; Ma et al., 2011), the smart univariate classifier (SUC), and smart 
univariate Bayes classifier (SUBC) to form the four hybrid classifiers categorized as the 
hybrid linear prediction classifiers (HLPC). We will not undergo derivational details but 
apply the LPA and LSA predictive values as a plug-in to train these classifiers.

Univariate Linear Predictive Classifier (ULPC)

We apply the estimates from Equation 2 as input to construct the ULPC model and decision 
boundary as Equations 8 and 9:

,
								      

										                 (8)

. 							              (9)

Therefore Equations 8 and 9 are the univariate linear predictive classifier based on the 
decision rule from Huberty and Holmes (1983).

Linear Predictive Bayes Classifier (LPBC)

Based on Equation 2 and the concept discussed in Theodoridis and Koutroumbas (2009) 
and Ma et al. (2011), the LPBC is stated as Equations 10 and 11:

(10)

(11)

Hence, assign to G1 if otherwise, allocate 
to G2 if

.

The LPBC applies the Bayes classifier rule to assign an object to the actual group.

Smart Univariate Linear Predictive Classifier (SULPC)

We apply the input from Equation 2 as a plug-in to train the classifier as Equations 12 and 13
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, 
 							     

					     					          (12)

. 
							     

										               (13)

Then the F-weight (wk) and the pooled variance based on Equation 2 are 
stated as

, ,

, .

The group evaluation criteria are obtained as Equation 14 to evaluate the performance 
of this method:

, , . 
 			 

										               (14)

Therefore, an object is allocated to G1 if T1 ≥ Tt1t2; otherwise, assign 
 to G2 if T1 ≥ Tt1t2.

LPBC/ SULPC
The LPBC/SULPC combines LPBC and SULPC to produce unbiased robust classification 
results. This combination averts the overfitting problem and upward bias. Overfitting is 
a process whereby the model predicted value exceeds the given optimal probability of 
correct classification (PCC).

Hybrid Least Square Classifier (HLSC)
The four methods, i.e., the univariate classifier, Bayes classifier, smart univariate classifier, 
and smart univariate Bayes classifier discussed in the last subsection, utilize the LSA 
estimate (Equation 5) to train the different methods. The HLSC consists of the univariate 
least square classifier (ULSC), least square Bayes classifier (LSBC), the least square smart 
univariate classifier (LSSUC), and LSBC/LSSUC. Similar plug-in procedures discussed in 
Equations 8 to 14 are implemented by replacing the LPA estimates with the LSA estimates.

Evaluation Criteria
The evaluation criteria (Huberty & Holmes, 1983) applied in this study are based on 
Equation 15:
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					         (15)

Where Φ (.) is the cumulative distribution function of the standard normal distribution, 
and α is the Mahalanobis distance (Johnson & Wichern, 1992). The probability of correct 
classification (PCC) denoted by ω, derived from the various methods, is compared with 
the optimal value (Cσ) to investigate the best method. The error of misclassification (ϵ = 
Cσ - ω)can also be applied to determine the robustness of the methods. Equation 16 is 
called the percentage of performance prediction accuracy (PPPA),

Ω= 								            (16)

The last expression determines the overall percentage of a correct group membership. 
It is useful to analyze the performance of the methods at a glance. Equation 16 will be 
adopted to analyze the comparative performance analysis of these methods.

Data Collection and Analysis

These data sets were collected to investigate the comparative classification performance 
for the above classifiers. The applications of this study focus on two real data sets from 
the agricultural sector to determine whether these classifiers could be used to maximally 
separate different species and varieties of agricultural products. The first data consist of 
cattle horns measurement in Appendices 1 and 2. The second consists of artificial data on 
varieties of banana shapes (https://www.openml.org/d/1460). The first data set consists of 
collections of cattle horns for ten months in an abattoir in Abraka, Delta State, Nigeria. 
This data set consists of two features: horn length and width measured in centimeters (cm) 
for bull and cow, with 100 instances categorized into two groups. The first group consists 
of features measured on a bull, while the second group consists of features measured on a 
cow. This data uses to determine whether the classifiers can accurately predict cattle gender. 
Appendix 1 consists of the bull data set, categorized as Group one (G1), and Appendix 2 
consists of the cow data set, categorized as Group two (G2). The banana variety data set 
originally contains n = 5,300 with two attributes. The second group (G2) consist of n2 = 
2,376, we selected n1 = 2,376, hence n1 = n2 = 2,376, n = n1 + n2. The details for this data 
set are contained in (https://www.openml.org/d/1460 (KEEL, 2015). The data set was 
reshuffled into a training set (60%) and a validation set (40%). The mean probability of 
correct classifications is based on 1000 replications. Both data sets will be analyzed based 
on the percentage of performance prediction accuracy (PPPA).
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RESULTS AND DISCUSSIONS
This section consists of the applications of agricultural production data. The focus is to 
investigate if these classifiers could be applied to separate animal species or gender and 
plant varieties into different groups based on measured attributes. This study mimics the 
univariate measurement for the classification of nanoelectronics and spectroscopy (Leys 
et al., 2019) and the study by Huberty and Holmes (1983).

Application 1: Cattle Horns Data Set
The results in Table 1 and Figure 1 are based on Equation 16, demonstrating the comparative 
performance analysis between the classical univariate nearest mean classifier (NMC) 
and the hybrid NMC based on LSA and LPA predicted estimates. From the analysis, we 
observed that the LSANMC and LPANMC have higher PPPA values (>95%) than the 
classical NMC. Furthermore, it shows that the robust predictive estimates of LSA and LPA 
enhance classification accuracy better than the classical NMC method. The comparative 
performance analysis is depicted in Figure 1. The findings revealed that the NMC method 
based on the LSA and LPA is more resistant to influential observations than the classical 
NMC. 

Figure 1. Comparative analysis of the classical NMC and the hybrid NMC for cattle gender

Classical Methods PPPA
NMC 64.20

LSANMC 97.00
LPANMC 99.00

Table 1 
Comparative performance of NMC and the hybrid NMC for cattle gender
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The results in Table 2 are based on Equation 16, demonstrating the comparative 
performance analysis between the conventional and hybrid methods. The result revealed that 
all the methods have a very high percentage performance prediction accuracy (PPPA) (Ω). 
The conventional methods have an average of 95.14% PPPA, while the HLPC and HLSPC 
have 98.75% and 99.25% PPPA for classifying cattle by gender. Based on the average 
PPPA for all the methods, the hybrid methods showed more robust classification accuracy 
than the conventional methods. From this analysis, we remark that the PPPA adopted to 
analyze the performance of these methods is suitable for the classification task. In Figure 
2, the hybrid methods have more robust PPPA values than conventional ones. However, the 
probability methods (Bayes classifier (BC) and smart univariate Bayes classifier (SUCBC)) 
demonstrated comparable performance to some of the hybrid methods.

Table 2
Comparative analysis of percentage performance prediction accuracy (PPPA)

Conventional Methods
(Average %)

HLPC (%) HLSPC (%)

UC 89.54 ULPC 97.00 ULSC 99.00
BC 98.12 LPBC 100.00 LSBC 100.00

SUC 89.05 SULPC 98.00 LSSUC 98.00
SUCBC 98.12 LPBC/

SULPC
100.00 LSBC/

LSSUC
100.00

LPA 99.00
LSA 97.00

Figure 2. Comparative analysis of PPPA values for cattle gender classification
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Application 2: Banana Variety Data Set

The classification results reported in Table 3 show that the classical NMC has 
betterclassification performance than the hybrid NMC. However, all the methods have 
over 80% PPPA, as illustrated in Figure 3.

In comparison to the results reported in Table 1, the analysis in Table 3 showed that the 
performance of these methods is data-dependent. The former (Table 1) showed an upward 
trend, while the latter (Table 3) showed vice versa. The implication of the comparative 
analysis indicated that the performance of any classifier depends on the data set. It affirmed 
the data dependency theory, which states that the performance of any classification 
method depends strictly on the data structure and sign direction. The data structure can be 
continuous or discrete.

Table 3
Comparative performance of NMC and the hybrid NMC for a banana variety

Figure 3. Comparative analysis of the classical NMC and the hybrid NMC for a banana variety

Classical Methods PPPA
NMC 98.14

LSANMC 84.89
LPANMC 84.89



Pertanika J. Sci. & Technol. 30 (4): 2831 - 2850 (2022) 2843

Robust Hybrid Classification Methods and Applications

Conventional Methods (%) HLPC (%) HLSPC (%)
UC 97.85 ULPC 88.81 ULSC 88.81
BC 99.93 LPBC 93.51 LSBC 93.51

SUC 99.98 SULPC 89.85 LSSUC 89.85
SUCBC 99.96 LPBC/SULPC 93.51 LSBC/LSSUC 93.51

LPA 93.51
LSA 93.51

The comparative percentage performance prediction accuracy based on this data set 
is reported in Table 4. The result revealed that all the methods have over 88% correct 
group membership prediction. This result demonstrated that these methods are capable 
of classifying banana varieties based on shapes with a minimum PPPA of 88.81% and a 
maximum PPPA of 99.98%. The conventional methods have an average PPPA of 97.46% 
banana variety classification by shapes, while the hybrid methods HLPC and HLSPC have 
91.42% average PPPA, respectively. The hybrid methods based on LPA (HLPC) and LSA 
(HLSPC) have similar results for this data set. This unique performance showed that the 
conventional classifiers demonstrated more robust classification accuracy than the hybrid 
methods. Figure 4 shows that the conventional methods have superior performance over the 

Table 4
Comparative analysis of percentage performance prediction accuracy (PPPA)

Figure 4. Comparative analysis of PPPA values for banana variety classification by shapes
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hybrid methods. However, the hybrid probability methods (LPBC, LSBC, LPBC/SULPC, 
LSBC/LSSUC) have the same PPPA values as the LPA and LSA methods.

The cattle data set and the classifiers demonstrated that cattle gender could be 
determined by horn length and base width measurements. The study also indicated that 
shapes could classify the banana variety. The 90% average PPPA classification accuracy 
for all the methods based on the two data sets showed that these methods are robust. The 
analysis in Figures 1 and 2 imply that the hybrid methods showed superior performance 
over the conventional methods, while in Figures 3 and 4, the conventional methods altered 
the superior performance of the hybrid methods except for the probability-based hybrid 
methods. From this analysis, we observed the upward and downward trends as depicted 
in Figures 1 to 4, which affirmed the data dependency theory. We also observed that the 
LSA and LPA showed consistent performance in classifying cattle gender and banana 
variety. This consistent robust performance was also observed in the hybrid classifiers. 
The strength of the data dependency theory on the classification methods was obvious in 
the two data sets, as shown in the upward and downward trends depicted in Figures 1 to 4. 
The limitations of these classifiers are based on the validity of the data dependency theory. 

CONCLUSION 

We have proposed the LPA and LSA classification rules and four hybrid classifiers. The 
evaluation criteria were also established and reinforced into PPPA for easy and fast analysis. 
The performance of these classifiers is demonstrated using agricultural produce data. The 
first data set applied to test the performance comparison of these methods was obtained 
by measuring the length and base width of cattle horns. The second data set consists of 
two classes of banana variety. The result affirmed that we could apply the proposed LPA, 
LSA, and the hybrid classifiers to robustly classify cattle into gender based on horn and 
width length measurement and classify banana variety based on shapes. The investigated 
LPA and LSA techniques showed comparable classification accuracy with PPPA of over 
90%. The analysis revealed that the proposed and hybrid classifiers are robust enough to 
perform classification based on these data sets. These techniques generally showed varying 
high percentage performance prediction accuracy based on the data sets. The results 
demonstrated that these methods could be applied as alternative classifiers to perform 
classification tasks. We remark that the results reported in this paper affirmed the effects 
of data dependency theory on classification methods. We look forward to extending these 
classifiers to multi-dimensional applications in the future.
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Horn 
length

(x) (cm)

Horn 
width

(y) (cm)

Horn 
length

(x) (cm)

Horn 
width

(y) (cm)

17.6 8.6 23.6 10.4 17.6 8.6 23.6 10.4

21.5 9.5 22.7 10.9 21.5 9.5 22.7 10.9

21 7.8 24.2 11.9 21 7.8 24.2 11.9

17.2 6.4 22.4 11 17.2 6.4 22.4 11

16.5 8.2 19.8 8.6 16.5 8.2 19.8 8.6

21.9 8.7 21.2 7.4 21.9 8.7 21.2 7.4

18.1 9.8 20.3 6 18.1 9.8 20.3 6

11.7 8.1 19 5.7 11.7 8.1 19 5.7

15.4 7.2 18.7 5 15.4 7.2 18.7 5

18.2 8.5 19.4 5.3 18.2 8.5 19.4 5.3

17.8 7.4 17.8 4.7 17.8 7.4 17.8 4.7

16.5 6.3 19.8 5.4 16.5 6.3 19.8 5.4

21.5 8.8 17.6 4.2 21.5 8.8 17.6 4.2

22 10.1 18.6 5.1 22 10.1 18.6 5.1

20.1 9 21 6.5 20.1 9 21 6.5

21 10.1 17.7 4.8 21 10.1 17.7 4.8

17.3 7.2 20.2 6 17.3 7.2 20.2 6

19.2 9.4 19.6 5.6 19.2 9.4 19.6 5.6

20.1 10 19.1 5.1 20.1 10 19.1 5.1

18.2 7.4 17.9 4.6 18.2 7.4 17.9 4.6

18 8.2 18.3 5 18 8.2 18.3 5

17.6 7 17.9 4.6 17.6 7 17.9 4.6

18.2 7.3 17.7 4.8 18.2 7.3 17.7 4.8

16.5 9.2 20.2 6 16.5 9.2 20.2 6

21.5 11.6 19.6 5.6 21.5 11.6 19.6 5.6

Appendix 1
Length and base width measurements of bull horns (group one)
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Horn 
length

(x) (cm)

Horn 
width 

(y) (cm)

Horn 
length

(x) (cm)

Horn
 width 

(y) (cm)

23.3 10.3 29 12.7 23.3 10.3 29 12.7

24.5 8.8 30.1 10.9 24.5 8.8 30.1 10.9

25.6 10.4 30.6 17.1 25.6 10.4 30.6 17.1

24.9 9.2 34 11.2 24.9 9.2 34 11.2

29.3 13.1 26.2 12 29.3 13.1 26.2 12

26.2 9.2 30.1 11.6 26.2 9.2 30.1 11.6

25.9 9 29.5 11.3 25.9 9 29.5 11.3

25 8.9 27.4 10 25 8.9 27.4 10

26.5 10.5 25.9 9.8 26.5 10.5 25.9 9.8

20.3 9.1 28.3 11 20.3 9.1 28.3 11

23.7 10 29 11.2 23.7 10 29 11.2

21.9 9.5 30.2 12 21.9 9.5 30.2 12

27.2 10.7 31 12.4 27.2 10.7 31 12.4

28.1 12.2 27.5 10.8 28.1 12.2 27.5 10.8

26.7 11.9 26.8 10.2 26.7 11.9 26.8 10.2

27.4 11.3 29.6 11.6 27.4 11.3 29.6 11.6

29.1 17.4 28.1 10.8 29.1 17.4 28.1 10.8

27.5 12.6 30 11.8 27.5 12.6 30 11.8

29 12.8 27.4 10.2 29 12.8 27.4 10.2

27.3 11.2 28.8 9.8 27.3 11.2 28.8 9.8

21.9 11.1 28.6 10.3 21.9 11.1 28.6 10.3

23.7 10.4 31.2 12.6 23.7 10.4 31.2 12.6

22.8 13.8 29.6 11.6 22.8 13.8 29.6 11.6

24.9 11 28.1 10.8 24.9 11 28.1 10.8

26.2 12.3 30 11.8 26.2 12.3 30 11.8

Appendix 2
Length and base width measurements of cow horns (group two)


